Temperature Dependence of the Densities and Speeds of Sound of the Binary Solutions of LiClO₄ with Diethyl Ether, Tetrahydrofuran, Acetone, and Ethyl Acetate

Anil Kumar[†]

Physical Chemistry Division, National Chemical Laboratory, Pune 411008, India

Densities, ρ , and speeds of sound, u, of the solutions of LiClO₄ with diethyl ether, tetrahydrofuran, acetone, and ethyl acetate are reported from 288.15 K to 338.15 K. At 298.15 K, measurements have been made up to \approx 5.37, 1.12, 4.78, and 3.61 mol kg⁻¹ of LiClO₄ in diethyl ether, tetrahydrofuran, acetone, and ethyl acetate, respectively. At other temperatures, densities and sound velocities are measured to m < 0.2 mol kg⁻¹ in order to calculate the infinite dilution apparent molal volumes, ϕ_{V^0} , and compressibilities, ϕ_{K^0} , in different solvents. The ρ and u data for these solutions can be analyzed by Pitzer equations with average standard deviations, σ , as 0.08 kg m⁻³ and 0.5 m s⁻¹, respectively.

Introduction

The aqueous and nonaqueous solutions of salt are proving to be valuable agents in enhancing the reaction rates of Diels–Alder reactions, benzoin condensation, Claissen rearrangement, etc.¹ In the process of examining the possible origin of forces responsible for such impressive rate enhancement, we recently attempted to study the applications of energy and volume parameters derived from experimental volumetric data of these systems in developing significant correlations involved in the reaction kinetics of the Diels–Alder reactions.² Solutions of LiClO₄ with diethyl ether, tetrahydrofuran, acetone, and ethyl acetate have been effectively used in the recent synthetic work.^{3,4}

In this article, we present experimental density, ρ , and speeds of sound, u, data of LiClO₄ + diethyl ether, + tetrahydrofuran, + acetone, and + ethyl acetate at 298.15 K and analyze them using the specific ion-interaction theory. We have also measured these properties in low concentration ($m < 0.2 \text{ mol kg}^{-1}$ of LiClO₄) at 288.15 K, 308.15 K, 318.15 K, 328.15 K, and 338.15 K for determining the infinite dilution apparent molal volume, ϕ_{V^0} , and compressibility, ϕ_{K^0} , of LiClO₄ in different solvents. A thorough literature search reveals that the experimental data on these systems are not available. There are a few papers with only abstracts in the earlier Russian journals, which are not accessible to readers.

Experimental Section

All the solvents employed in the present investigation procured from Aldrich were high-purity AR grade. Solvents were dried before use.⁵ LiClO₄ (Aldrich) was used as such after heating it to 150 °C for about 5 h and then cooling to room temperature. Due care was taken to keep LiClO₄ moisture free.

Densities were measured by a pycnometer with a volume of 50×10^{-6} m³ with a precision of $\pm 0.005\%$. The pycnometer was calibrated against the densities of aqueous NaCl solutions with an agreement of 0.01%.⁶ An ultrasonic interferometer (Mittal Enterprises) was used to measure

the sound velocities in solutions at 2 MHz. The interferometer was calibrated against the literature data on NaCl solutions with an accuracy of $\pm 0.05\%$.⁷ The sound velocities were precise to within 0.01%. The temperature for all the measurements was kept constant to within 0.05 K. The solutions were prepared by mass on a single-pan Mettler balance within the accuracy of 0.01 mg. The molalities were accurate to within 2 \times 10⁻⁴ mol kg⁻¹.

Results and Discussion

The experimental density, ρ , and speed of sound, u, data as a function of concentration, m, for LiClO₄ + diethyl ether, + tetrahydrofuran, + acetone, and + ethyl acetate systems at 298.15 K are listed in Table 1. The experimental data on the LiClO₄ + tetrahydrofuran system were collected up to $m \approx 1.75$ mol kg⁻¹ owing to limited solubility of LiClO₄ in tetrahydrofuran. As pointed out above, there are limited compilations to compare our data. However, there exists good agreement between our and reported density values (with an average error of 0.011%) for LiClO₄ + diethyl ether solutions.⁸ The density or speeds of sound (*y*) for these systems are fitted by a nonlinear least-squares method using commercially available ORIGIN v 5.0 supplied by Microcal Inc. USA to the equation of the form

$$y = y_0 + am^{1/2} + bm + cm^{3/2} + dm^2 + em^{5/2}$$
 (1)

where a-e are the adjustable parameters and y_0 is density or speed of sound ($y_0 = \rho^0$ or $y_0 = u^0$) of the pure solvent. Adjustable parameters (with their errors) obtained from the regression of both the ρ and u up to high concentrations for all the four systems at 298.15 K are listed in Table 2 together with average standard deviation of fits, σ . For clarity, parameters a-e are used for the density correlation while a^0-e^0 indicate the parameters for the speed of sound. These density and sound velocity data can be employed to calculate the adiabatic compressibility, β (by the Laplace equation), apparent molal volume, ϕ_V , and compressibility, ϕ_K , using the standard definitions.^{6,7} At temperatures other than 298.15 K, we measured both the ρ and u in dilute concentrations of LiClO₄ ($m < 0.2 \text{ mol kg}^{-1}$) only in order to calculate the ϕ_{V^0} and ϕ_{K^0} in different solvents. The ρ and

[†] E-mail: akumar@ems.ncl.res.in. Fax: +91 20 5893044.

$m \pmod{\mathrm{kg}^{-1}}$	ho (kg m ⁻³)	<i>u</i> (m s ⁻¹)	$m \ ({ m mol} \ { m kg}^{-1})$	ho (kg m ⁻³)	<i>u</i> (m s ⁻¹)
		$LiClO_4 + d$	iethyl ether		
0	707.6	990.9	1.1121	798.6	1172.3
0.0459	711.2	1001.3	1.3959	822.7	1214.1
0.0989	715.2	1008.9	2.6805	958.8	1446.5
0.1352	718.9	1016.7	3.6997	1129.9	1704.5
0.1798	721.7	1023.2	4.5023	1313.8	1980.1
0.1958	723.4	1025.7	5.0459	1522.6	2259.6
0.2823	729.8	1045.7	5.3699	1755.5	2577.8
0.8432	775.4	1128.7			
		$LiClO_4 + Tet$	rahydrofuran		
0	878.8	1189.9	0.8639	1011.1	1411.2
0.0317	881.1	1195.0	1.0612	1048.7	1450.6
0.0848	895.0	1206.8	1.2483	1088.9	1495.6
0.1223	900.7	1214.9	1.4194	1135.2	1536.4
0.1662	906.4	1225.9	1.5110	1152.2	1554.1
0.1913	910.4	1230.3	1.5797	1183.0	1571.3
0.2241	913.8	1235.6	1.7563	1121.6	1605.7
0.6583	975.2	1344.9			
		LiClO ₄ +	Acetone		
0	784.4	1007.9	1.2168	914.7	1245.7
0.0435	788.7	1014.1	2.3174	1075.7	1491.8
0.0891	794.4	1024.9	3.1774	1263.2	1721.8
0.1346	799.7	1034.1	3.9264	1444.1	1922.2
0.2528	809.0	1057.3	4.3941	1669.6	2080.8
0.7466	860.2	1151.6	4.7829	1892.3	2215.3
0.9839	886.9	1196.9			
		$LiClO_4 + Ei$	thyl Acetate		
0	894.3	1031.9	0.8689	1010.2	1240.7
0.0317	898.7	1037.2	1.0672	1043.4	1293.4
0.0785	905.0	1048.7	2.0279	1235.4	1564.6
0.1255	910.2	1061.2	2.7037	1428.6	1795.4
0.1662	916.6	1069.8	3.2317	1663.1	1959.7
0.2219	921.9	1079.9	3.6101	1916.7	2041.1
0.6560	979 9	1193.0			

Table 1. Experimental Densities, ρ , and Speeds of Sound, u, of the LiClO₄ in Diethyl Ether, Tetrahydrofuran, Acetone, and Ethyl Acetate Solutions at 298.15 K

Table 2. Parameters of Eq 1 for Correlating ρ and u with m up to High Concentrations of the LiClO₄ in Diethyl Ether, Tetrahydrofuran, Acetone, and Ethyl Acetate Solutions at 298.15 K

params	$LiClO_4 + diethyl ether$	$LiClO_4 + tetrahydrofuran$	$LiClO_4 + acetone$	$LiClO_4 + ethyl acetate$
		ρ Values		
$ ho^0 ({ m kg} { m m}^{-3})$	707.6	878.8	784.4	894.3
$a (\text{kg}^{1.5} \text{ m}^{-3} \text{ mol}^{-0.5})$	218.5 ± 1.2	24.66 ± 0.55	178.9 ± 2.20	145.3 ± 1.91
$b (\mathrm{kg}^2 \mathrm{m}^{-3} \mathrm{mol}^{-1})$	-959 ± 8	106.58 ± 2.11	-806 ± 7	-684 ± 6
$c (\mathrm{kg}^{2.5}\mathrm{m}^{-3}\mathrm{mol}^{-1.5})$	1542 ± 18	-48.4 ± 1.1	1412 ± 19	1448 ± 20
$d (\mathrm{kg}^3 \mathrm{m}^{-3} \mathrm{mol}^{-2})$	-911 ± 6	76.58 ± 0.59	-872 ± 9	-1047 ± 25
$e (kg^{3.5} m^{-3} mol^{-2.5})$	190.8 ± 12	0	194.9 ± 6.4	279 ± 9
$\sigma (\mathrm{kg} \mathrm{m}^{-3})$	0.03	0.02	0.01	0.02
		<i>u</i> Values		
$u^0 ({\rm ms}^{-1})$	990.9	1189.9	1007.9	1031.9
$a^{\circ} \text{ (m kg}^{0.5} \text{ s}^{-1} \text{ mol}^{-0.5} \text{)}$	286.0 ± 1.7	5.54 ± 0.11	16.64 ± 0.94	-150.09 ± 2.6
b° (m kg s ⁻¹ mol ⁻¹)	-1135 ± 13	109.3 ± 6.4	110.47 ± 0.65	1026 ± 17
c° (m kg ^{1.5} s ⁻¹ mol ^{-1.5})	1909 ± 28	255.4 ± 7	111.31 ± 2.5	-1355 ± 16
d° (m kg ² s ⁻¹ mol ⁻²)	-1136 ± 15	-122.72 ± 5.9	-62.80 ± 1.72	929 ± 12
e° (m kg ^{2.5} s ⁻¹ mol ^{-2.5})	239.2 ± 3.6	0	18.26 ± 1.98	-211.16 ± 7.3
σ (m s ⁻¹)	0.6	0.8	0.2	0.3

u data of the solutions of LiClO₄ in four solvents in low concentration range at 288.15 K, 308.15 K, 318.15 K, 328.15 K, and 338.15 K are listed in Table 3. We describe these data using eq 1 with only 2 parameters i.e., *a*, *b* and *a*°, *b*°. The parameters *a*, *b* are used for ρ , while the *a*°, *b*° parameters are for *u*. These temperature-dependent adjustable parameters as calculated from the data in the dilute solutions (below $m = 0.2 \text{ mol kg}^{-1}$) of LiClO₄ in all the four solutions at 288.15 K, 308.15 K, 318.15 K, 328.15 K, and 338.15 K are listed in Table 4. These adjustable parameters at 298.15 K were obtained from the experimental density and speeds of sound data below $m = 0.2 \text{ mol kg}^{-1}$ reported in Table 1. It should be noted that eq 1 with five adjustable parameters was used to fit the density and speeds of sound data up to high concentrations at

298.15 K. On the other hand, only two adjustable parameters were required to fit these data at low concentrations for all the temperatures, including at 298.15 K. These dilute range data when converted to ϕ_V and ϕ_K were used to estimate ϕ_{V^0} and ϕ_{K^0} at different temperatures as described earlier.^{9,10} These values can be represented by a temperature-dependent polynomial expression as

$$\phi^{0} = q_{1} + q_{2}(T - T_{\text{ref}}) + q_{3}(T - T_{\text{ref}})^{2}$$
 (2)

with $T_{\rm ref} = 298.15$ K. The values of q_1 , q_2 , and q_3 together with uncertainties for all the systems are recorded in Table 5. Figure 1a, and b shows the temperature dependence of $\phi_{\rm V}^{\rm o}$ and $\phi_{\rm K}^{\rm o}$, respectively, in the LiClO₄ + diethyl ether, + tetrahydrofuran, + acetone, and + ethyl acetate solutions.

$m \pmod{\mathrm{kg}^{-1}}$	ho (kg m ⁻³)	$u ({ m ms}^{-1})$	$m \pmod{\mathrm{kg}^{-1}}$	ho (kg m ⁻³)	$u ({ m ms}^{-1})$
		$LiClO_4 + I$	Diethyl Ether		
0 0.0378 0.0652	724.8 728.1 733.3	1130.4 1190.4 1250.4	0.0994 0.1221 0.1495	737.4 740.5 744.6	1309.4 1370.3 1420.2
0 0.0251 0.0555	667.5 672.3 676.4	$\begin{array}{c} T = 3 \\ 970.9 \\ 975.4 \\ 980.6 \end{array}$	0.0882 0.1198 0.1523	678.3 680.1 683.3	987.2 992.5 1001.0
0 0.0252 0.0592	656.3 657.5 658.7	$\begin{array}{c} T = 3 \\ 950.9 \\ 956.2 \\ 961.1 \end{array}$	0.1017 0.1335 0.1614	$\begin{array}{c} 660.1 \\ 664.3 \\ 668.6 \end{array}$	969.3 975.4 978.5
0 0.0229 0.0484	$ \begin{array}{r} 644.3 \\ 646.1 \\ 648.5 \end{array} $	$\begin{array}{c} T = 3 \\ 930.4 \\ 934.1 \\ 938.6 \end{array}$	28.15 K 0.0792 0.1017 0.1492	$650.5 \\ 652.1 \\ 654.3$	944.1 946.8 955.2
0 0.0352 0.1023	632.4 634.7 635.8	$\begin{array}{c} T = 3 \\ 912.1 \\ 915.8 \\ 925.1 \end{array}$	38.15 K 0.0594 0.1295 0.1520		920.7 930.0 933.1
		$LiClO_4 + Te$	etrahydrofuran		
0 0.0174 0.0421	898.9 902.3 905.1	1 – 2 1210.1 1213.1 1218.4	0.0812 0.1140	912.4 918.3	1225.5 1227.3
0 0.0199 0.0512	848.8 850.3 852.4	$\begin{array}{c} T = 3 \\ 1170.0 \\ 1174.1 \\ 1181.3 \end{array}$	0.0944 0.1231	855.1 860.8	1190.2 1197.3
0 0.0113 0.0615	838.7 840.1 841.3	$\begin{array}{c} T = 3 \\ 1149.1 \\ 1152.2 \\ 1161.3 \end{array}$	18.15 K 0.0895 0.1189	843.1 846.0	1167.8 1175.1
0 0.0195 0.0390	828.6 830.1 831.2	$\begin{array}{c} T = 3 \\ 1128.8 \\ 1133.7 \\ 1138.3 \end{array}$	28.15 K 0.0644 0.0922 0.1221	832.1 835.0 840.3	1143.2 1147.9 1154.2
0 0.0291 0.0400	817.9 819.3 821.3	$\begin{array}{c} T = 3 \\ 1109.0 \\ 1112.7 \\ 1117.0 \end{array}$	38.15 K 0.0705 0.1015	822.3 825.4	1123.9 1130.7
		LiClO ₄	+ Acetone		
0 0.0245 0.0552	801.1 802.0 804.5	$\begin{array}{c} 1 = 2 \\ 1024.9 \\ 1033.2 \\ 1040.4 \end{array}$	0.0895 0.1304	807.9 814.3	1048.1 1056.8
0 0.0344 0.754	745.1 746.2 750.3	7 = 3 979.0 987.8 997.2	08.15 K 0.1130 0.1298	751.8 758.2	1006.5 1010.1
0 0.0114 0.0424	734.0 734.1 734.7	$\begin{array}{c} T = 3 \\ 957.9 \\ 958.5 \\ 965.1 \end{array}$	0.0951 0.1122	735.9 738.0	978.8 983.2
$\begin{array}{c} 0 \\ 0.0254 \\ 0.0666 \end{array}$	723.2 724.5 725.4	$\begin{array}{c} T = 3 \\ 933.4 \\ 937.1 \\ 946.8 \end{array}$	28.15 K 0.0954 0.1134	727.2 730.2	953.0 966.8
0 0.0135 0.0420	711.9 712.5 714.2	$\begin{array}{c} T = 3 \\ 905.2 \\ 910.4 \\ 916.8 \end{array}$	38.15 K 0.0758 0.1007	715.8 718.0	924.1 930.6
		$LiClO_4 + E$	Ethyl Acetate		
0 0.0179 0.0422	912.6 913.2 915.4	1060.7 1065.2 1070.2	0.0856 0.1152 0.1357	917.9 920.5 922.4	$\begin{array}{c} 1080.5 \\ 1090.1 \\ 1095.3 \end{array}$
0 0.0343 0.0751	840.6 856.8 863.4	1001.2 1010.4 1019.3	0.0994 0.1212	867.2 868.9	1023.8 1028.8
0 0.0314 0.0452	841.1 854.7 847.0	7 = 3 969.9 977.0 979.9	0.0811 0.0954 0.1120	852.1 854.3 856.2	986.8 992.8 997.3
0 0.0224 0.0651	828.6 831.8 837.3	$\begin{array}{c} T = 3 \\ 940.1 \\ 945.2 \\ 950.2 \end{array}$	28.15 K 0.0894 0.1134	841.7 843.2	960.4 967.9
0 0.0139 0.0342	816.6 818.9 821.8	7=3 909.9 912.6 918.2	38.15 K 0.0644 0.0921 0.1125	824.7 827.1 829.0	925.1 930.7 934.8

Table 3. Experimental Density,	o, and Speeds of Sounds, <i>u</i> ,	of the LiClO ₄ + Diethyl Ethe	er, + Tetrahydrofran, + Acetone,
and + Ethyl Acetate Solutions u	p to <i>m</i> < 0.2 mol kg ⁻¹ at 288	8.15 K, 308.15 K, 318.15 K, 328	.15 K, and 338.15 K

		$ ho~({ m kg~m^{-3}})$			$u ({ m m \ s^{-1}})$		
	ρ^0	а	b	u°	a°	b°	
<i>T</i> /K	$kg m^{-3}$	$kg^{1.5} m^{-3} mol^{-1.5}$	$kg^2 m^{-3} mol^{-1}$	$m s^{-1}$	$m \ kg^{0.5} \ s^{-1} \ mol^{-0.5}$	$\overline{{ m m \ kg \ s^{-1} \ mol^{-1}}}$	
			$LiClO_4 + Diethyl$	Ether			
288.15	724.9	-0.868	82.801	1092.5	98.07	-70.32	
298.15	707.6	-1.65	81.91	990.9	59.21	-93.59	
308.15	667.5	-0.983	75.564	965.3	55.81	-67.50	
318.15	655.6	0.397	65.269	940.1	33.40	-55.90	
328.15	643.4	3.343	65.173	931.0	10.63	-22.59	
338.15	632.3	5.234	69.091	900.4	6.33	-8.07	
			$LiClO_4 + Tetrahydr$	rofuran			
288.15	897.8	10.51	122.58	1198.6	115.78	112.2	
298.15	878.8	4.22	130.10	1189.9	73.2	105.43	
308.15	849.4	-5.75	131.15	1165.3	50.41	-10.58	
318.15	839.5	-5.96	125.53	1145.8	43.72	-25.89	
328.15	829.5	-7.98	122.17	1127.7	17.66	15.14	
338.15	815.5	-10.62	112.21	1114.5	-45.33	21.07	
			$LiClO_4 + Aceto$	one			
288.15	802.0	-9.76	118.43	1014.1	109.36	-78.55	
298.15	784.4	-2.83	113.99	1007.9	62.11	-43.55	
308.15	747.8	-4.28	114.51	976.5	38.34	-67.39	
318.15	734.5	-6.81	107.59	956.9	21.15	-48.61	
328.15	724.2	-11.37	105.09	922.1	22.15	-54.15	
338.15	712.3	-14.24	96.24	902.7	36.93	-133.29	
			LiClO ₄ + Ethyl A	cetate			
288.15	899.5	-4.416	144.20	1198.0	134.55	43.53	
298.15	894.3	-2.39	137.50	1031.9	31.62	68.01	
308.15	872.3	-1.514	109.51	970.1	84.95	-154.33	
318.15	841.0	-1.138	119.73	966.7	42.07	-101.54	
328.15	828.9	-5.181	117.52	938.4	32.61	-111.22	
338.15	816.1	-1.322	111.31	908.1	29.92	-134.91	

Table 4. Coefficients of Eq 1 for Correlating the Isothermal ρ and *u* Data with Concentration (<0.2 M) for LiClO₄ in Diethyl Ether, Tetrahydrofuran, Acetone, and Ethyl Acetate Solutions from 288.15 K to 338.15 K

Table 5. Adjustable Parameters of Eq 2 for Correlating $\phi_{V^{\circ}}$ and $\phi_{K^{\circ}}$ with $T - T_{ref}$ of LiClO₄ in Diethyl Ether, Tetrahydrofuran, Acetone, and Ethyl Acetate Solutions

	$\phi_{ m V}^\circ~({ m m}^3~{ m mol}^{-1})$			$\phi_{\rm K}^{\circ}$ (m ³ mol ⁻¹ Pa ⁻¹)			
	$10^{6}q_{1}$	$10^{7}q_{2}$	$10^{9}q_{3}$	$10^6 \sigma (\phi_V^\circ)$	$10^{13}q_1$	$10^{14}q_2$	$10^{13}\sigma~(\phi_{ m K}^{\circ})$
system	$m^3 mol^{-1}$	$\overline{\mathrm{m}^3 \mathrm{mol}^{-1} \mathrm{K}^{-1}}$	$m^3 mol^{-1} K^{-2}$	$m^3 mol^{-1}$	$\overline{\mathrm{m}^3\mathrm{mol}^{-1}\mathrm{Pa}^{-1}}$	$\overline{{ m m}^3{ m mol}^{-1}{ m Pa}^{-1}{ m K}^{-1}}$	$m^3 mol^{-1} Pa^{-1}$
$LiClO_4 + diethyl ether$	-5.5 ± 0.1	1.87 ± 0.09	-0.95 ± 0.11	0.2	-11.6 ± 0.3	5.82 ± 0.11	0.1
LiClO ₄ + tetrahydrofuran	-39.1 ± 0.5	10.31 ± 0.50	-8.20 ± 0.73	0.2	-47.8 ± 0.7	5.12 ± 0.17	0.2
$LiClO_4 + acetone$	-19.9 ± 0.4	7.00 ± 0.62	-6.24 ± 0.77	0.1	-86.1 ± 1.3	5.77 ± 0.67	0.1
$LiClO_4$ + ethyl acetate	-38.7 ± 0.7	3.73 ± 0.34	-0.148 ± 0.030	0.1	-66.2 ± 1.3	5.27 ± 0.44	0.2
av σ				0.2			0.2

The ϕ_V and ϕ_K data for these solutions can be analyzed by the specific interaction theory of Pitzer.¹¹ Though the details of the Pitzer equations are given elsewhere,¹² they are summarized below for a prompt use. The Pitzer equations for ϕ_V or ϕ_K of a 1:1 electrolyte can be written as

$$\phi = \phi^{0} + (A/b) \ln(1 + bm^{0.5}) + 2RT[B_{MX}m + C_{MX}m^{2}]$$
(3)

where

$$B_{\rm MX} = \beta^{(0)} + \beta^{(1)} (2/\alpha^2 {\rm m}) [1 - (1 - \alpha m^{0.5})] \exp(\alpha m^{0.5}) \quad (4)$$

and

$$C_{\rm MX} = 0.5 \, C^{\phi} \tag{5}$$

In eq 3 the second and third terms on the right-hand side of the equation indicate the Debye–Huckel and virial coefficient expressions, respectively. The Pitzer–Debye– Huckel limiting slope values, A for ϕ_V and ϕ_K , were calculated as described by Ananthaswamy and Atkinson.¹³ The dielectric constants of the solvents were taken from Marcus.¹⁴ The terms, $\partial D/\partial P$ and $\partial \beta/\partial P$ for each solvent were computed from the experimental data listed elsewhere.^{5,8,14} The input values for $\partial D/\partial P$ for diethyl ether, tetrahydrofuran, acetone, and ethyl acetate were 1.1 imes 10⁻³, 2.2 imes 10^{-3} , 2.8 \times 10⁻³, and 1.8 \times 10⁻³, respectively. Similarly, the values of $\partial \beta / \partial P$ for diethyl ether, tetrahydrofuran, acetone, and ethyl acetate were 0.29 \times 10 $^{-13}$, 0.81 \times 10 $^{-13}$, 0.22×10^{-13} and $0.61\times 10^{-13}\,Pa^{-2},$ respectively. The values of $\partial^2 ln D\!/\partial P^{\!2}$ for all the solvents were assigned as zero due to their negligible magnitudes. Thus, the values of A used in the case of volumes are 0.181 \times 10⁻⁶ m³ kg^{1/2} mol^{-3/2}, $0.468 \times 10^{-6} \text{ m}^3 \text{ kg}^{1/2} \text{ mol}^{-3/2}, 1.991 \times 10^{-6} \text{ m}^3 \text{ kg}^{1/2} \text{ mol}^{-3/2},$ and $0.334 \times 10^{-6} \text{ m}^3 \text{ kg}^{1/2} \text{ mol}^{-3/2}$ for diethyl ether, tetrahydrofuran, acetone, and ethyl acetate, respectively. Similarly, for compressibilities the values of A as calculated for diethyl ether, tetrahydrofuran, acetone, and ethyl acetate are $-0.391\,\times\,10^{-17}$ m^3 kg $^{1/2}$ mol $^{-3/2}$ Pa $^{-1}$, -1.011 \times 10^{-17} m^3 kg $^{1/2}$ mol^{-3/2} Pa^{-1}, -4.29 \times 10^{-17} m^3 kg $^{1/2}$ mol^{-3/2} Pa⁻¹, and -0.721×10^{-17} m³ kg ^{1/2} mol^{-3/2} Pa⁻¹, respectively. In the case of ϕ_V , the parameters B_{MX} and C_{MX} are comprised of $(\partial \beta^{(0)} / \partial P)_T$, $(\partial \beta^{(1)} / \partial P)_T$, and $(\partial C^{\phi} / \partial P)_T$. The second pressure derivatives, $(\partial^2 \beta^{(0)} / \partial P^2)_T$, $(\partial^2 \beta^{(1)} / \partial P^2)_T$, and $(\partial^2 C^{\phi}/\partial P^2)$, are used for correlating $\phi_{\rm K}$ with concentration. α and *b* are set to 2.0 and 1.2, respectively.

We applied eqs 3–5 for analyzing ϕ_V and ϕ_K data. Since ϕ_V and ϕ_K can be converted into ρ and u, respectively, of

		for $\phi_{\rm V}$			
	$-10^6 \phi_{ m V}^{\circ}$	$10^9 (\partial \beta^{(0)} / \partial P)_T$	$10^9 (\partial \beta^{(1)} / \partial P)_T$	$10^9 (\partial \mathbf{C}^{\phi} / \partial P)_T$	10 ⁶ σ
systems	$\overline{\mathbf{m}^3 \mathbf{mol}^{-1}}$	$\overline{\mathrm{m}^3 \mathrm{\ mol}^{-1} \mathrm{\ Pa}^{-1}}$	$\overline{\mathrm{m}^3 \mathrm{mol}^{-1} \mathrm{Pa}^{-1}}$	$\overline{\mathrm{m}^3 \mathrm{mol}^{-1} \mathrm{Pa}^{-1}}$	$\overline{\mathbf{m}^3 \mathbf{mol}^{-1}}$
LiClO ₄ + diethyl ether	5.8	-1.05	-5.31	1.04	0.25
$LiClO_4 + tetrahydrofuran$	39.4	16.69	14.69	4.33	0.9
$LiClO_4 + acetone$	20.0	-2.91	-14.14	-0.69	0.4
$LiClO_4$ + ethyl acetate	38.0	-0.68	-0.62	-2.52	0.7
		for $\phi_{\rm K}$			
	$10^{13}-\phi_{\mathrm{K}}^{\circ}$	$10^{17} (\partial^2 \beta^{(0)} / \partial P^2)_T$	$10^{17} (\partial 2\beta^{(1)}/\partial P^2)_T$	$10^{17} (\partial \ ^2 \mathrm{C}^{\varphi} / \partial P^2)_T$	10 ¹³ σ
systems	$m^3 mol^{-1} Pa^{-1}$	$\mathrm{m^3~mol^{-1}~Pa^{-2}}$	$m^3 mol^{-1} Pa^{-2}$	$m^3 mol^{-1} Pa^{-2}$	$\overline{\mathrm{m}^3 \ \mathrm{mol}^{-1} \ \mathrm{Pa}^{-1}}$
$LiClO_4 + diethyl ether$	11.5	18.87	58.31	-3.32	0.25
LiClO ₄ + tetrahydrofuran	48.0	-0.59	-9.94	0.29	0.4
$LiClO_4 + acetone$	85.3	4.58	2.71	-0.83	0.6
$LiClO_4 + ethyl acetate$	65.9	2.69	-2.85	-0.59	0.4_{5}
-5 -10 -15 -5 -10 -15 -5 -10 -15 -5 -10 -20 -25 -25 -30 -30 -35 -40 -45 -10 0	A A A A A A A A A A A A A A A A A A A		-20 -20 -20 -40 -0 -0 -0 -100 -120 0	1 2 3 4 5 m (mol kg ⁻¹)	6
(b) -0.02 -0.04 -0.06 -0.06 -0.08 -0.10 -0.12 -10 0			(b) _{-0.02} -0.04 -0.04 -0.06 -0.08 -0.08 -0.08 -0.10 -0.12		5

Table 6. Pitzer Coefficients Obtained from the Analysis of ρ and u Data (for ϕ_V and ϕ_K) of the LiClO₄ in Diethyl Ether, Tetrahydrofuran, Acetone, and Ethyl Acetate Solutions at 298.15 K

Figure 1. (a) Plots of ϕ_V^o as a function of $T - T_{ref}$ for LiClO₄diethyl ether (\bigcirc), -tetrahydrofuran (\square), -acetone (\triangle), and -ethyl acetate (\bigtriangledown) solutions. (b) Plots of ϕ_{K^o} as a function of $T - T_{ref}$ for LiClO₄-diethyl ether, -tetrahydrofuran, -acetone, and -ethyl acetate solutions; symbols are the same as in (a).

(T-T_{ref}) (K)

the solutions, we fitted the experimental ρ and u data with weighted regression analysis procedure for all the four systems at 298.15 K. Fittings of ρ and u through the Pitzer equations can be more accurate in obtaining reliable predictions for ϕ_V and ϕ_K , respectively, as the errors in the ϕ_V and ϕ_K data are magnified in the dilute salt solutions.¹⁵

The results of this fitting exercise are summarized in Table 6 in the form of the Pitzer parameters for all the solutions at 298.15 K. It is noted that the ϕ_V and ϕ_K data for all the solutions can be accurately fitted by the Pitzer equations. The Pitzer parameters are adjustable parameters resulting from the nonlinear least-squares fitting of the experimental data. In Figure 2 a are plotted the calculated values of ϕ_V (shown by solid lines) in contrast to those of experimental (points) as a function of m for the LiClO₄ + diethyl ether, + tetrahydrofuran, + acetone, and + ethyl acetate solutions.

Figure 2. 2. (a) ϕ_V as a function of concentration of LiClO₄, *m*, for LiClO₄-diethyl ether, -tetrahydrofuran, -acetone, and - ethyl acetate solutions at 298.15 K. Symbols are for the experimental data, and lines are calculated by the Pitzer equations. Symbols are the same as in Figure 1a. (b) ϕ_k as a function of concentration of LiClO₄, *m*, for LiClO₄-diethyl ether, -tetrahydrofuran, -acetone, and -ethyl acetate solutions at 298.15 K. Symbols are the same as in Figure 1a. Symbols are for the experimental data; lines are calculated by the Pitzer equations.

m (mol kg⁻¹)

 $\phi_{\rm K}$ in Figure 2b. An examination of these plots suggests that both the $\phi_{\rm V}$ and $\phi_{\rm K}$ for the LiClO₄ + diethyl ether, + tetrahydrofuran, + acetone, and + ethyl acetate solutions can be correlated with an average σ of 0.45×10^{-6} m³ mol⁻¹ and 0.39×10^{-13} m³ mol⁻¹ Pa⁻¹ for $\phi_{\rm V}$ and $\phi_{\rm K}$, respectively. To seek better appreciation of the effectiveness of the Pitzer equations, we have also plotted the deviations, δ ($\delta = \rho_{\rm expt} - \rho_{\rm calc}$ or $u_{\rm exp} - u_{\rm cal}$), as a function of the salt concentration, *m*, in Figure 3 a,b for ρ and *u*, respectively. The deviations are larger in the low concentration range for both ρ and *u* in all the systems studied. At higher concentrations, these deviations are small and random. In the low concentrations of LiClO₄ (*m* < 1 mol kg⁻¹) the instrument precision becomes important. The uncertainties in molalities and

Figure 3. (a) Plot of $\triangle \rho$ (experimental ρ – calculated ρ) as a function of concentration of LiClO₄, *m*, in LiClO₄–diethyl ether, –tetrahydrofuran, –acetone, and –ethyl acetate solutions at 298.15 K. Symbols are the same as in Figure 1a. (b) Plot of $\triangle u$ (experimental *u* – calculated *u*) as a function of concentration of LiClO₄, *m*, in LiClO₄–diethyl ether, –tetrahydrofuran, –acetone, and –ethyl acetate solutions at 298.15 K. Symbols are the same as in Figure 1a.

densities of solvent and solutions determine the errors in ϕ_V , denoted by $\sigma_{\phi V}$. The error propagation calculations show an uncertainty of $\pm 0.4 \times 10^{-6} \text{ m}^3 \text{ mol}^{-1}$ in ϕ_V at m = 0.015. In the Pitzer fits, the weighting was proportional to $1/\sigma_{\phi V}$, where $\sigma_{\phi V} \approx (M_2/\rho^2 + 1/m\rho^2)(\sigma\rho)^2$. The molecular weight of LiClO₄ is denoted by M_2 . The errors in density, $\sigma\rho$, decrease from low to high salt concentrations. In other words, the Pitzer equations can correlate concentration dependence of ρ and u with average standard deviations for all the four systems as 0.08 kg m⁻³ and 0.51 m s⁻¹, respectively.

No efforts were made to fit the volume and compressibility data of dilute solutions at other temperatures, as the purpose of these measurements was to compute ϕ_{V^0} and ϕ_{K^0} values of LiClO₄ in different solvents.

In summary, we have presented experimental density and speeds of sound data of the $LiClO_4$ in diethyl ether, tetrahydrofuran, acetone, and ethyl acetate from 288.15 to 338.15 K with an interval of 10 K. We have not considered the ion-pair formation in our calculations, though the evidence from NMR data shows the formation of contact ion pairs.

Acknowledgment

Thoughtful comments of the reviewers improved the quality of the above work.

Literature Cited

- Kumar, A. Ionic Solutions and Their Pivotal Roles in Organic and Biological Systems. *Pure Appl. Chem.* 1998, 70, 615–621.
- (2) (a) Kumar, A. Can Internal Pressure Describe the Effect of Salt in Aqueous Diels—Alder Reaction? A Possible Explanation. J. Org. Chem. 1994, 59, 230–231. (b) Kumar, A. Rate Enhancement in Diels—Alder Reactions by Perchlorate Salts in Nonaqueous Solvents: An Alternate Explanation. J. Org. Chem. 1994, 59, 4612–4617.
- (3) Breslow, R. Hydrophobic Effects on Simple Organic Reactions in Water. Acc. Chem. Res. 1991, 24, 159–164.
- (4) Grieco, P. A. Organic Chemistry in Unconventional Solvents. Aldrichim. Acta 1991, 24, 59.
- (5) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents: *Physical* Properties and Methods of Purification, 4th ed.; Wiley-Interscience: New York, 1986.
- (6) Lo Surdo, A.; Alzola, E. M.; Millero, F. J. PVT Properties of Concentrated Aqueous Electrolytes: I Densities and Apparent Molar Volumes of NaCl, Na₂SO₄, MgCl₂ and MgSO₄ Solutions from 0.1 mol kg⁻¹ to Saturation and from 273.15 to 323.15K. J. Chem. Thermodyn. **1982**, *14*, 649–662.
- (7) Millero, F. J.; Ricco, J.; Schreiber, D.. PVT Properties of Concentrated Electrolytes: II Compressibilities of Aqueous NaCl, Na₂-SO₄, MgCl₂ and MgSO₄ Solutions from 0.1 mol kg⁻¹ to saturation and from 0 to 50 °C. J. Solution Chem. **1982**, 11, 671–685.
- (8) Lobo, V. M. M.; Quaresma, J. L. Literature Data on Thermodynamic and Transport Properties, University of Coimbra Press: Coimba, Portugal, 1986; Vol. 2.
- (9) Redlich, O. The Molal Volumes of Electrolytes. J. Phys. Chem. 1963, 67, 496-498.
- (10) Redlich, O.; Meyer, D. M. The Molal Volumes of Electrolytes. Chem. Rev. 1964, 64, 221–227.
- (11) Pitzer, K. S. Thermodynamics of Electrolytes 1. Theoretical Basis and General Equations. *J. Phys. Chem.* **1973**, *77*, 268–277.
- (12) Kumar, A.; Atkinson, G. Thermodynamics of Concentrated Electrolyte Mixtures II. Apparent Molal Volumes, Compressibilities and Expansibilities of Aqueous NaCl and CaCl₂ at Ionic Strengths of 1, 2, 5 mol kg⁻¹ and from 5 to 35 °C. J. Phys. Chem. **1983**, 87, 5504–5507.
- (13) Ananthaswamy, J.; Atkinson, G. Thermodynamics of Concentrated Electrolyte Mixtures. 4. Pitzer–Debye–Huckel Limiting Slopes for Water from 0 to 100 °C and from 1 atm to 1 kbar. J. Chem. Eng. Data 1984, 29, 81–87.
- (14) Marcus, Y. Ion Solvation; John Wiley: New York, 1986.
- (15) Rogers, P. S. Z.; Pitzer, K. S. Volumetric Properties of Aqueous Sodium Chloride Solutions. J. Phys. Chem. Ref. Data 1982, 11, 15–52.

Received for review September 24, 1999. Accepted March 31, 2000. JE990261S